Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Br J Pharmacol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641905

RESUMEN

BACKGROUND AND PURPOSE: Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), and exert adverse effects on mitochondrial function, although the mechanisms underlying these effects remain unclear. We used a tamoxifen-induced Hmgcr-knockout (KO) mouse model, a multi-omics approach and mitochondrial function assessments to investigate whether decreased HMGCR activity impacts key liver energy metabolism pathways. EXPERIMENTAL APPROACH: We established a new mouse strain using the Cre/loxP system, which enabled whole-body deletion of Hmgcr expression. These mice were crossed with Rosa26Cre mice and treated with tamoxifen to delete Hmgcr in all cells. We performed transcriptomic and metabolomic analyses and thus evaluated time-dependent changes in metabolic functions to identify the pathways leading to cell death in Hmgcr-KO mice. KEY RESULTS: Lack of Hmgcr expression resulted in lethality, due to acute liver damage caused by rapid disruption of mitochondrial fatty acid ß-oxidation and very high accumulation of long-chain (LC) acylcarnitines in both male and female mice. Gene expression and KO-related phenotype changes were not observed in other tissues. The progression to liver failure was driven by diminished peroxisome formation, which resulted in impaired mitochondrial and peroxisomal fatty acid metabolism, enhanced glucose utilization and whole-body hypoglycaemia. CONCLUSION AND IMPLICATIONS: Our findings suggest that HMGCR is crucial for maintaining energy metabolism balance, and its activity is necessary for functional mitochondrial ß-oxidation. Moreover, statin-induced adverse reactions might be rescued by the prevention of LC acylcarnitine accumulation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38172332

RESUMEN

Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.

3.
Biomed Pharmacother ; 168: 115803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924790

RESUMEN

Long-chain acylcarnitines (LCACs) are intermediates of fatty acid oxidation and are known to exert detrimental effects on mitochondria. This study aimed to test whether lowering LCAC levels with the anti-ischemia compound 4-[ethyl(dimethyl)ammonio]butanoate (methyl-GBB) protects brain mitochondrial function and improves neurological outcomes after transient middle cerebral artery occlusion (MCAO). The effects of 14 days of pretreatment with methyl-GBB (5 mg/kg, p.o.) on brain acylcarnitine (short-, long- and medium-chain) concentrations and brain mitochondrial function were evaluated in Wistar rats. Additionally, the mitochondrial respiration and reactive oxygen species (ROS) production rates were determined using ex vivo high-resolution fluorespirometry under normal conditions, in models of ischemia-reperfusion injury (reverse electron transfer and anoxia-reoxygenation) and 24 h after MCAO. MCAO model rats underwent vibrissae-evoked forelimb-placing and limb-placing tests to assess neurological function. The infarct volume was measured on day 7 after MCAO using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Treatment with methyl-GBB significantly reduced the LCAC content in brain tissue, which decreased the ROS production rate without affecting the respiration rate, indicating an increase in mitochondrial coupling. Furthermore, methyl-GBB treatment protected brain mitochondria against anoxia-reoxygenation injury. In addition, treatment with methyl-GBB significantly reduced the infarct size and improved neurological outcomes after MCAO. Increased mitochondrial coupling efficiency may be the basis for the neuroprotective effects of methyl-GBB. This study provides evidence that maintaining brain energy metabolism by lowering the levels of LCACs protects against ischemia-induced brain damage in experimental stroke models.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias , Encéfalo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Hipoxia/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo
4.
Mol Autism ; 14(1): 29, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553674

RESUMEN

Deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene was identified in probands with autism spectrum disorder (ASD). TMLHE encodes the first enzyme in carnitine biosynthesis, N6-trimethyllysine dioxygenase (TMLD). Researchers have suggested that carnitine depletion could be important for the development of ASD and cognitive, locomotor and social dysfunctions, but previous findings have been inconclusive regarding the specific role of endogenous carnitine. We developed a mouse knockout model with constitutive TMLD enzyme inactivation that exhibited a significant decrease in the carnitine by more than 90% compared to wild-type (WT) mice. However, we did not observe any significant social, cognitive, or repetitive-behavior changes associated with ASD in the knockout mice; muscle strength and coordination were also not affected. In addition, the life expectancy of knockout mice was similar to that of WT mice. In conclusion, knockout of Tmlh in mice does not induce an ASD phenotype or motor dysfunction despite extremely low carnitine and gamma-butyrobetaine concentrations. Moreover, inactivation of TMLD does not induce a phenotype similar to previously described primary carnitine deficiency; indeed, our results showed that low levels of carnitine sustained adequate energy production, muscle function and social behavior in mice.


Asunto(s)
Trastorno del Espectro Autista , Oxigenasas de Función Mixta , Animales , Ratones , Trastorno del Espectro Autista/genética , Carnitina/genética , Cognición , Ratones Noqueados , Fenotipo , Oxigenasas de Función Mixta/genética
5.
Pharmacol Res ; 191: 106771, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068533

RESUMEN

Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.


Asunto(s)
Receptores sigma , Animales , Receptores sigma/metabolismo , Animales Modificados Genéticamente , Receptor Sigma-1
6.
Diagnostics (Basel) ; 13(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046558

RESUMEN

Our study aimed to evaluate the association between gastric cancer (GC) and higher concentrations of the metabolites L-carnitine, γ-butyrobetaine (GBB) and gut microbiota-mediated trimethylamine N-oxide (TMAO) in the circulation. There is evidence suggesting that higher levels of TMAO and its precursors in blood can be indicative of either a higher risk of malignancy or indeed its presence; however, GC has not been studied in this regard until now. Our study included 83 controls without high-risk stomach lesions and 105 GC cases. Blood serum L-carnitine, GBB and TMAO levels were measured by ultra-high-performance liquid chromatography-mass spectrometry (UPLC/MS/MS). Although there were no significant differences between female control and GC groups, we found a significant difference in circulating levels of metabolites between the male control group and the male GC group, with median levels of L-carnitine reaching 30.22 (25.78-37.57) nmol/mL vs. 37.38 (32.73-42.61) nmol/mL (p < 0.001), GBB-0.79 (0.73-0.97) nmol/mL vs. 0.97 (0.78-1.16) nmol/mL (p < 0.05) and TMAO-2.49 (2.00-2.97) nmol/mL vs. 3.12 (2.08-5.83) nmol/mL (p < 0.05). Thus, our study demonstrated the association between higher blood levels of L-carnitine, GBB, TMAO and GC in males, but not in females. Furthermore, correlations of any two investigated metabolites were stronger in the GC groups of both genders in comparison to the control groups. Our findings reveal the potential role of L-carnitine, GBB and TMAO in GC and suggest metabolic differences between genders. In addition, the logistic regression analysis revealed that the only significant factor in terms of predicting whether the patient belonged to the control or to the GC group was the blood level of L-carnitine in males only. Hence, carnitine might be important as a biomarker or a risk factor for GC, especially in males.

7.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982599

RESUMEN

Heart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Ácidos Grasos , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Carnitina , Miocitos Cardíacos/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768762

RESUMEN

Autoimmune thyroid disease (AITD), including Graves' disease (GD) or Hashimoto's thyroiditis (HT), occurs due to genetic susceptibility and environmental factors, among which the role of stressful events remains controversial. This study investigated the relationship between the number and impact of stressful life events in AITD patients with selenium status, and the Th1/Th2/Th17 immune response. The study population included three groups: HT (n = 47), GD (n = 13), and a control group (n = 49). Thyroid function parameters, autoantibody levels, and the plasma levels of cytokines, selenium, selenoprotein P (SeP), and glutathione peroxidase 3 (GPx) activity were measured. Participants filled out the Life Experiences Survey. No significant differences in the number of stressful life events were found among the patients with HT, GD, and the controls. A higher (median (interquartile range)) negative stress level (8 (4-12)) than a positive stress level (3 (1-9)) was found in the HT group. The HT group showed a correlation between SeP and the positive stress level: rs = -0.296, p = 0.048, and the GD group between GPx and the negative stress level (rs = -0.702, p = 0.011). Significant positive correlations between thyroid peroxidase antibody level and the total number of major life events (p = 0.023), the number of major life events in the last 7-12 months, and the number of major life events with no impact and a negative stress level were found. We suggest that the measurements of Th2-related cytokines and selenoproteins could be used as biomarkers for the development of AITD in cases where stress is considered a component cause of the pathogenic mechanism of the disease.


Asunto(s)
Enfermedad de Graves , Enfermedad de Hashimoto , Selenio , Humanos , Enfermedad de Graves/genética , Citocinas/genética , Inmunidad , Predisposición Genética a la Enfermedad
9.
Data Brief ; 46: 108890, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36687149

RESUMEN

This dataset describes in detail the outcomes of acute trimethylamine N-oxide (TMAO) administration on cardiac, vascular and mitochondrial functionality in ex vivo and in vivo models. The accumulation of TMAO in target tissues was assessed after performing heart perfusion or by incubating aortic tissue in a solution containing TMAO. To evaluate the impact of TMAO on mitochondrial function, the aortic rings and heart homogenates of Wistar rats were incubated in a solution containing [9,10-3H] palmitate (5 µCi/ml) or D-[U-14C] glucose (0.625 µCi/ml) in the presence or absence of TMAO with subsequent measurement of substrate oxidation and uptake. The effects of TMAO on the vascular reactivity of isolated conductance and resistance vessels were tested by measuring their response to acetylcholine and sodium nitroprusside. The impact of elevated TMAO levels on cardiac function and infarct size caused by ischemia-reperfusion injury was evaluated in Langendorff perfused heart model. Normal and forced heart functioning was analyzed by echocardiography in CD-1 mouse acute cardiac stress model induced by isoproterenol (10 µg/mouse) upon single and 7 repeated daily administrations of TMAO (120 mg/kg). The data presented in the manuscript provide valuable information on measurements performed under conditions of acutely elevated TMAO levels in experimental models of cardiac and vascular function and energy metabolism. Furthermore, the data have high reuse potential as they could be applied in the planning of future in vitro, ex vivo, and in vivo studies addressing the molecular mechanisms targeted by elevated levels of TMAO.

10.
Front Neurol ; 13: 985895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203982

RESUMEN

As traumatic brain injury (TBI) is one of the major causes of permanent disability, there is increasing interest in the long-term outcome of TBI. While motor deficits, cognitive impairment and longer-term risks of neurodegenerative disease are well-established consequences in animal models of TBI, pain is discussed less often despite its high prevalence. The current study addresses the need to characterize the extent of chronic pain and long-term behavioral impairments induced by moderate lateral fluid percussion injury (latFPI) in mice up to 12 months post-TBI and evaluates the validity of the model. Adult male BALB/c mice were subjected to latFPI, and the results were compared with outcomes in sham-operated mice. Mouse behavior was assessed at 1 and 7 days and 1, 3, 6, 9, and 12 months post-injury using sensory-motor (neurological severity score, NSS), cold (acetone) and mechanical sensitivity (von Frey), depressive-like behavior (tail suspension), locomotor (open field), motor coordination (rotarod) and cognitive (Morris water maze, y-maze, passive avoidance) tests. Animals with TBI demonstrated significantly higher NSS than the sham-operated group for up to 9 months after the injury. Cold sensitization was significantly increased in the contralateral hind paw in the TBI group compared to that of the sham group at 3, 6, and 9 months after TBI. In the von Frey test, the withdrawal threshold of the contralateral and ipsilateral hind paws was reduced at 6 months after TBI and lasted for up to 12 months post-injury. latFPI induced progressive depressive-like behavior starting at 6 months post-injury. No significant deficits were observed in memory, motor coordination or locomotion over the 12-month assessment period. The present study demonstrates that moderate TBI in mice elicits long-lasting impairment of sensory-motor function, results in progressive depression and potentiates peripheral pain. Hence, the latFPI model provides a relevant preclinical setting for the study of the link between brain injury and chronic sequelae such as depression and peripheral pain.

11.
Front Endocrinol (Lausanne) ; 13: 941822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046786

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury leads to significant impairment of cardiac function and remains the leading cause of morbidity and mortality worldwide. Activation of peroxisome proliferator-activated receptor ß/δ (PPARß/δ) confers cardioprotection via pleiotropic effects including antioxidant and anti-inflammatory actions; however, the underlying mechanisms are not yet fully elucidated. The aim of this study was to investigate the effect of PPARß/δ activation on myocardial mitochondrial respiratory function and link this effect with cardioprotection after ischemia/reperfusion (I/R). For this purpose, rats were treated with the PPARß/δ agonist GW0742 and/or antagonist GSK0660 in vivo. Mitochondrial respiration and ROS production rates were determined using high-resolution fluororespirometry. Activation of PPARß/δ did not alter mitochondrial respiratory function in the healthy heart, however, inhibition of PPARß/δ reduced fatty acid oxidation (FAO) and complex II-linked mitochondrial respiration and shifted the substrate dependence away from succinate-related energy production and towards NADH. Activation of PPARß/δ reduced mitochondrial stress during in vitro anoxia/reoxygenation. Furthermore, it preserved FAO-dependent mitochondrial respiration and lowered ROS production at oxidative phosphorylation (OXPHOS)-dependent state during ex vivo I/R. PPARß/δ activation was also followed by increased mRNA expression of components of FAO -linked respiration and of transcription factors governing mitochondrial homeostasis (carnitine palmitoyl transferase 1b and 2-CPT-1b and CPT-2, electron transfer flavoprotein dehydrogenase -ETFDH, peroxisome proliferator-activated receptor gamma co-activator 1 alpha- PGC-1α and nuclear respiratory factor 1-NRF-1). In conclusion, activation of PPARß/δ stimulated both FAO-linked respiration and PGC-1α/NRF -1 signaling and preserved mitochondrial respiratory function during I/R. These effects are associated with reduced infarct size.


Asunto(s)
PPAR delta , PPAR-beta , Animales , Ácidos Grasos/metabolismo , Isquemia , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR-beta/agonistas , PPAR-beta/genética , PPAR-beta/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Respiración
12.
Biomedicines ; 10(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35884876

RESUMEN

Sigma-1 receptor (Sig1R) has been proposed as a therapeutic target for neurological, neurodegenerative, and psychiatric disorders, including depression and anxiety. Identifying metabolites that are affected by Sig1R absence and cross-referencing them with specific mood-related behaviors would be helpful for the development of new therapies for Sig1R-associated disorders. Here, we examined metabolic profiles in the blood and brains of male CD-1 background Sig1R knockout (KO) mice in adulthood and old age and correlated them with the assessment of depression- and anxiety-related behaviors. The most pronounced changes in the metabolic profile were observed in the plasma of adult Sig1R KO mice. In adult mice, the absence of Sig1R significantly influenced the amino acid, sphingolipid (sphingomyelin and ceramide (18:1)), and serotonin metabolic pathways. There were higher serotonin levels in plasma and brain tissue and higher histamine levels in the plasma of Sig1R KO mice than in their age-matched wild-type counterparts. This increase correlated with the reduced behavioral despair in the tail suspension test and lack of anhedonia in the sucrose preference test. Overall, these results suggest that Sig1R regulates behavior by altering serotonergic and histaminergic systems and the sphingolipid metabolic pathway.

13.
Pharmacol Rev ; 74(3): 506-551, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35710135

RESUMEN

Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal ß -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.


Asunto(s)
Carnitina , Resistencia a la Insulina , Biomarcadores , Carnitina/análogos & derivados , Carnitina/química , Carnitina/metabolismo , Carnitina/uso terapéutico , Ácidos Grasos/metabolismo , Humanos , Resistencia a la Insulina/fisiología
14.
PLoS One ; 17(5): e0268563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35584184

RESUMEN

Sigma-1 receptor (Sig1R) is an endoplasmic reticulum (ER)-related membrane protein, that forms heteromers with other cellular proteins. As the mechanism of action of this chaperone protein remains unclear, the aim of the present study was to detect and analyze the intracellular dynamics of Sig1R in live cells using super-resolution imaging microscopy. For that, the Sig1R-yellow fluorescent protein conjugate (Sig1R-YFP) together with fluorescent markers of cell organelles were transfected into human ovarian adenocarcinoma (SK-OV-3) cells with BacMam technology. Sig1R-YFP was found to be located mainly in the nuclear envelope and in both tubular and vesicular structures of the ER but was not detected in the plasma membrane, even after activation of Sig1R with agonists. The super-resolution radial fluctuations approach (SRRF) performed with a highly inclined and laminated optical sheet (HILO) fluorescence microscope indicated substantial overlap of Sig1R-YFP spots with KDEL-mRFP, slight overlap with pmKate2-mito and no overlap with the markers of endosomes, peroxisomes, lysosomes, or caveolae. Activation of Sig1R with (+)-pentazocine caused a time-dependent decrease in the overlap between Sig1R-YFP and KDEL-mRFP, indicating that the activation of Sig1R decreases its colocalization with the marker of vesicular ER and does not cause comprehensive translocations of Sig1R in cells.


Asunto(s)
Microscopía , Receptores sigma , Humanos , Pentazocina , Receptores sigma/metabolismo , Receptor Sigma-1
15.
Nutrients ; 14(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35268068

RESUMEN

Elevated plasma levels of trimethylamine N-oxide (TMAO) have been proposed as a diet-derived biomarker of cardiometabolic disease risk. Caloric restriction is the most common dietary intervention used to improve cardiometabolic health; however, novel trends suggest a fasting-mimicking diet (FMD) as a more feasible alternative. FMD is a variation of intermittent fasting, based on caloric restriction and limitation of protein sources of animal origin, applied in daily cycles during a 5-day period. As TMAO is intensively produced by gut microbiota after the consumption of animal-derived products, we aim to investigate whether a 5-day FMD affects plasma TMAO levels and markers of metabolic health. To investigate whether an increase in vegetable intake possesses similar effects on TMAO levels and metabolic parameters, healthy volunteers (n = 24) were subjected to a 5-day FMD and 19 volunteers served as a reference group (VEG). This group of volunteers consumed an additional four servings of vegetables per day, but otherwise stayed on their usual diet. FMD resulted in a twofold decrease in plasma TMAO levels, which was not evident in the volunteers from the VEG group. Moreover, FMD led to a weight loss of 2.8 ± 0.2 kg and a subsequent reduction in BMI compared to baseline. The FMD group exhibited a significant elevation in plasma ketone bodies (14-fold compared to baseline) and a decrease in IGF-1 levels by 37 ± 8 ng/mL. Since fasting glucose and C-peptide levels decreased, all volunteers in the FMD group showed improved insulin sensitivity and a decreased HOMA-IR index. In contrast, in the VEG group, only a slight reduction in plasma levels of fasting glucose and triglycerides was noted. In conclusion, we show that FMD is a viable strategy to reduce plasma levels of TMAO by limiting caloric intake and animal-derived protein consumption. The reduction in the level of TMAO could be an additional benefit of FMD, leading to a reduced risk of cardiometabolic diseases.


Asunto(s)
Ayuno , Metilaminas , Dieta , Voluntarios Sanos , Humanos
16.
Plants (Basel) ; 11(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336701

RESUMEN

Glechoma hederacea L. is a medicinal plant that is known in traditional medicine for its anti-inflammatory, antibacterial, antiviral, and anticancer properties. This study evaluated the potential for commercial production of G. hederacea and compared the chemical composition and activity of 70% ethanol extracts and steam-distilled essential oils from wild-grown and cultivated G. hederacea collected in different harvesting periods. The main compounds identified in the 70% ethanol extracts were phenolic acids (chlorogenic and rosmarinic acids) and flavonoid O-glycosides. The essential oil varied in the three accessions in the range of 0.32-2.98 mL/kg-1 of dry weight. The extracts possessed potent antioxidant and anti-inflammatory properties in LPS-treated bone-marrow-derived macrophages. The results of flow cytometry show that extracts from different vegetation periods reduced the conversion of macrophages to the proinflammatory phenotype M1. The chemical composition varied the most with the different harvesting periods, and the most suitable periods were the flowering and vegetative phases for the polyphenolic compounds and essential oils, respectively. G. hederacea can be successfully grown under organic farming conditions, and cultivation does not significantly affect the chemical composition and biological activity compared to wild-grown plants.

17.
J Vis Exp ; (180)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35188114

RESUMEN

Macro photography is applicable for imaging various tissue samples at high magnification to perform qualitative and quantitative analyses. Tissue preparation and subsequent image capture are steps performed immediately after the ischemia-reperfusion (IR) experiment and must be performed in a timely manner and with appropriate care. For the evaluation of IR-induced damage in the heart and brain, this paper describes 2,3,5-triphenyl-2H-tetrazolium chloride (TTC)-based staining followed by macro photography. Scientific macro photography requires controlled lighting and an appropriate imaging setup. The standardized methodology ensures high-quality, detailed digital images even if a combination of an inexpensive up-to-date digital camera and macro lens is used. Proper techniques and potential mistakes in sample preparation and image acquisition are discussed, and examples of the influence of correct and incorrect setups on image quality are provided. Specific tips are provided on how to avoid common mistakes, such as overstaining, improper sample storage, and suboptimal lighting conditions. This paper shows the appropriate methodology for rat heart and brain tissue slicing and staining and provides guidelines for establishing lighting and camera setups and photography techniques for high-resolution image acquisition.


Asunto(s)
Fotograbar , Roedores , Animales , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Isquemia , Fotograbar/métodos , Ratas , Reperfusión
18.
Nucleic Acids Res ; 50(D1): D622-D631, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986597

RESUMEN

The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.


Asunto(s)
Bases de Datos Genéticas , Metaboloma/genética , Metabolómica/clasificación , Humanos , Lipidómica/clasificación , Espectrometría de Masas , Interfaz Usuario-Computador
19.
Medicina (Kaunas) ; 57(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34833429

RESUMEN

Background and Objectives: Adequate dietary intake of iodine and selenium is essential during pregnancy. While iodine is vital for maternal thyroid function and fetal development, selenium contributes to the regulation of thyroid function and thyroid autoimmunity. This study aimed to assess the consumption of iodine- and selenium-containing products by women of reproductive age and the iodine and selenium nutritional status of pregnant women in Latvia. Materials and Methods: Population health survey (2010-2018) data were used to characterize dietary habits in women of reproductive age. Additionally, 129 pregnant women in the first trimester were recruited; they completed a questionnaire and were tested for thyroid function, urinary iodine concentration (UIC), and serum selenium and selenoprotein P levels. Results: The use of some dietary sources of iodine (e.g., milk and dairy products) and selenium (e.g., bread) has decreased in recent years. Less than 10% of respondents reported the use of iodized salt. The use of supplements has become more common (reported by almost 50% of respondents in 2018). Dietary habits were similar in pregnant women, but the use of supplements was even higher (almost 70%). Nevertheless, most supplements used in pregnancy had insufficient contents of iodine and selenium. Thyroid function was euthyreotic in all women, but 13.9% of participants had a thyroid peroxidase antibodies (TPO-ab) level above 60 IU/mL. The median UIC (IQR) was 147.2 (90.0-248.1) µg/gCr, and 52.8% of pregnant women had a UIC below 150 µg/gCr. The mean selenium (SD) level was 101.5 (35.6) µg/L; 30.1% of women had a selenium level below 80 µg/L. The median selenoprotein P level was 6.9 (3.1-9.0) mg/L. Conclusions: Iodine nutrition in Latvian population of pregnant women was near the lower limit of adequate and a third of the population had a selenium deficiency. Supplements were frequently used, but most did not contain the recommended amounts of iodine and selenium.


Asunto(s)
Yodo , Selenio , Dieta , Femenino , Humanos , Letonia , Estado Nutricional , Embarazo , Cloruro de Sodio Dietético
20.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769042

RESUMEN

Neuroprotective effects of Sigma-1 receptor (S1R) ligands have been observed in multiple animal models of neurodegenerative diseases. Traumatic brain injury (TBI)-related neurodegeneration can induce long-lasting physical, cognitive, and behavioral disabilities. The aim of our study was to evaluate the role of S1R in the development of neurological deficits after TBI. Adult male wild-type CD-1 (WT) and S1R knockout (S1R-/-) mice were subjected to lateral fluid percussion injury, and behavioral and histological outcomes were assessed for up to 12 months postinjury. Neurological deficits and motor coordination impairment were less pronounced in S1R-/- mice with TBI than in WT mice with TBI 24 h after injury. TBI-induced short-term memory impairments were present in WT but not S1R-/- mice 7 months after injury. Compared to WT animals, S1R-/- mice exhibited better motor coordination and less pronounced despair behavior for up to 12 months postinjury. TBI induced astrocyte activation in the cortex of WT but not S1R-/- mice. S1R-/- mice presented a significantly reduced GFAP expression in Bergmann glial cells in the molecular layer of the cerebellum compared to WT mice. Our findings suggest that S1R deficiency reduces TBI-induced motor coordination impairments by reducing GFAP expression in Bergmann glial cells in the cerebellum.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Cerebelo/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/metabolismo , Receptores sigma/metabolismo , Animales , Astrocitos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/metabolismo , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...